Quantum mechanics and linearized gravitational waves
نویسندگان
چکیده
منابع مشابه
Quantum mechanics and linearized gravitational waves.
The interaction of classical gravitational waves (GW) with matter is studied within a quantum mechanical framework. The classical equations of motion in the long wave-length limit is quantized and a Schroedinger equation for the interaction of GW with matter is proposed. Due to its quadrapole nature, the GW interacts with matter by producing squeezed quantum states. The resultant hamiltonian is...
متن کاملQuantum Emulation of Gravitational Waves
Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolu...
متن کاملRefractive Gravitational Waves and Quantum Fluctuations
Refractive gravitational waves are a generalisation of impulsive waves on a null hypersurface in which the metric is discontinuous but a weaker continuity condition for areas holds. A simple example of a plane wave is examined in detail and two arguments are given that this should be considered a solution of Einstein’s vacuum field equations. The study of these waves is motivated by quantum gra...
متن کاملA Gravitational Explanation for Quantum Mechanics
It is shown that certain structures in classical General Relativity can give rise to non-classical logic, normally associated with Quantum Mechanics. A 4-geon model of an elementary particle is proposed which is asymptotically flat, particle-like and has a non-trivial causal structure. The usual Cauchy data are no longer sufficient to determine a unique evolution. The measurement apparatus itse...
متن کاملQuantum gravitational decoherence of matter waves
One of the biggest unsolved problems in physics is the unification of quantum mechanics and general relativity. The lack of experimental guidance has made the issue extremely evasive, though various attempts have been made to relate the loss of matter wave coherence to quantum spacetime fluctuations. We present a new approach to the gravitational decoherence near the Planck scale, made possible...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review D
سال: 1995
ISSN: 0556-2821
DOI: 10.1103/physrevd.51.1701